Brans-Dicke Cosmological Exact Solution in a Radiation-Filled Robertson-Walker Universe

Ashis Basu¹ and Dipankar Ray²

Received August 9, 1988

In a recent paper Singh and Deo obtained the field equations in Brans-Dicke theory for a radiation-filled universe with Robertson-Walker metric and solved the equations for a particular case. Here we obtain the complete set of solutions of these equations.

1. INTRODUCTION

The field equations in Brans-Dicke theory for a radiation-filled universe with a Robertson-Walker metric have been reduced to the following set equations in a recent paper by singh and Deo (1987):

$$
\left(\frac{\dot{Q}}{Q} - \frac{\dot{k}}{k}\right)^2 + \frac{K}{Q^2} = -\frac{2\ddot{Q}}{Q} + \frac{\ddot{k}}{k} + \frac{\dot{k}}{k} \left[-\left(1 + \frac{\omega}{2}\right)\frac{\dot{k}}{k} + \frac{E}{Q} \right]
$$
 (1a)

$$
\left(\frac{\dot{Q}}{Q} - \frac{1}{2}\frac{\dot{k}}{k}\right)^2 + \frac{K}{Q^2} = \frac{\dot{k}}{k} \left[\frac{1}{4}\left(1 + \frac{2\omega}{3}\right)\frac{\dot{k}}{k} - \frac{E}{Q}\right]
$$
(1b)

$$
\frac{\dot{k}}{c^2}Q^3 = -B\tag{1c}
$$

where $B = \text{const.}$, and the Robertson-Walker metric is given by

$$
ds^{2} = dt^{2} - Q^{2}(t) \left(\frac{dr^{2}}{1 - Kr^{2}} + r^{2} d\theta^{2} + r^{2} \sin^{2} \theta d\phi^{2} \right)
$$
 (2)

191

¹Rishra High School, Rishra, Hooghly, West Bengal, India.

²Mathematics Department, Jadavpur University, Calcutta-700032, India

with $K = +1, 0, -1$ for the space of positive, vanishing, and negative curvature index, respectively, and

$$
k = \frac{8\pi}{C^4} \phi^{-1} \left(\frac{4+2\omega}{3+2\omega}\right) \tag{3}
$$

where ϕ is the scalar field, ω is the Brans-Dicke constant, and as usual the dot stands for the derivative with respect to t.

Equations (la)-(lc) were solved by Singh and Deo (1987) for the particular case of

 $Q = dt^n$

where d is a constant and n is a positive integer. It turns out that the solutions exist only if $n = 1$, i.e., for the solutions of Singh and Deo (1987), Q is of the form $Q = dt$, where d is a constant. In the present paper we seek to generalize the work of Singh and Deo by obtaining the complete set of solutions of equations $(1a)-(1c)$.

2. SOLUTIONS

Putting

$$
R = \frac{k}{Q^2} \tag{4a}
$$

and

$$
q = -\ln k \tag{4b}
$$

and treating R as a function of q and q as a function of t, one can rewrite equations $(1a)-(1c)$ as

$$
\frac{B^2}{4}R_q^2 + K = B^2RR_{qq} - \left(\frac{3+2\omega}{4}\right)B^2R^2 - EBR
$$
 (1a')

$$
\frac{B^2}{4}R_q^2 + K = \left(\frac{3+2\omega}{12}\right)B^2R^2 + EBR
$$
 (1b')

$$
\dot{q} = BR^{3/2} e^{q/2} \tag{1c'}
$$

Case I. R \neq const. Differentiating (1b') with respect to *R*, one finds

$$
\frac{B^2}{2}R_{qq}=\frac{3+2\omega}{6}B^2R+EB
$$

Brans-Dicke Solution 193

The above equation and equation $(1b')$ together readily give $(1a')$. So for this case $(1a')$ is a consequence of $(1b')$ and hence one is really left with equations $(1b')$ and $(1c')$ which can be integrated as

$$
\int \frac{dR}{\left[\frac{1}{3}(3+2\omega)R^2+4ER/B-4K/B^2\right]^{1/2}}=q
$$
 (5a)

and

$$
\int \frac{e^{-q/2} dq}{BR^{3/2}} = t
$$
 (5b)

Equation (5a) gives R as a function of q; then equation (5b) gives q as a function of t. Then Q and k can be determined from equation (4). Explicit integration of (5a) is dependent on the values of ω , E, B, and K. The various cases are given below.

Case Ia.
$$
(3+2\omega)/3 = 0
$$
. From (5a),
\n
$$
\left(\frac{BR}{E} - \frac{K}{E^2}\right)^{1/2} = q + C_1
$$
\n(6a)

Case Ib. $(3+2\omega)/3>0$. From (5a),

$$
\frac{1}{\left[\frac{(3+2\omega)}{3}\right]^{1/2}}\log\left\{\left(R+\frac{6E}{B(3+2\omega)}\right)+\left[R^2+\frac{12E}{B(3+2\omega)}R-\frac{12K}{B^2(3+2\omega)}\right]^{1/2}\right\}
$$

$$
= q + C_2 \tag{6b}
$$

Case Ic. $(3+2\omega)/3$ < 0. From (5a),

$$
\frac{1}{\left[-(3+2\omega)/3\right]^{1/2}}\sin^{-1}\frac{R+\left[6E/B(3+2\omega)\right]}{(4K/B^2)\left[3/(3+2\omega)\right]+(4E^2/B^2)\left[3/(3+2\omega)\right]^2}
$$
\n
$$
=q+C_3\tag{6c}
$$

where C_1 , C_2 , and C_3 are integrating constants.

Case II. $R = \text{const.}$ In this case the solution of equation (1') is trivial. Solving $(1')$, using (4) , and suitably choosing the origin of t, one gets

 $Q \propto t$

which is the case considered by Singh and Deo (1987).

3. CONCLUSION

We have obtained the complete set of solutions for the field equations in Brans-Dicke theory for a radiation-filled universe given by equations

 $(1a)$ - $(1c)$ and metric given by equation (2) . The complete solution consists of two different solutions. The first one is given by equations $(4a)$, $(4b)$ and (Sa), (5b). The explicit form of the integrals of equations (Sa), (Sb) are given by equations $(6a)-(6c)$.

The other solution is that obtained by Singh and Deo (1987) and hence need not be discussed.

REFERENCE

 $\ddot{}$

Singh, R. T., and Deo, S. (1987). *International Journal of Theoretical Physics,* 26, 901.